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A problem of integer Quadratic programing 1s considered. An lnteger linear
programing problem was treated, for example, in [1 to 3], First, we shall
consider an auxiliary noninteger problem (the "continuous” problem) and then
we shall show how on the basis of the known solution of the noninteger prob-
lem one can find the integer (whole number) solution. As an example, we
give the problem of selecting the optimum order of external actions on a
linear system.

1, TFPormulstion of the problem. We are gilven the function
F(X) = X*NX 54- X*B 4 ¢ (1.1)
where X = (x',..., x*) 1s an n-dimensional vector; ¥ 1s a real symmetric

positive definite square n-order matrix, 5 an n~dimensional vector, , a
real number; the asterisk * indicates transposition.

Let »n real numbers vy,,..., y, be given. Out of these n numbers one
can construct n) different n-dimensiocnal vectors of which each one contains

as components all the numbers vy,,..., y,. We shall denote this set of vec-
tors by 0 . One can easlily think of all the points of the set ( as lying
in a plane perpendicular to the vector (1, 1, ..., 1) and passing through the

point (@, ¢, ..., G}, where g = {y,+ ... + v, )/n
It 1s required to find a point Z & Q, such that

F(Z) = min F(X), Xe Q@ (1.2)

Clearly, this problem can be worked by taking all permutations, but for
large n this is practically impossible. Let us introduce into our consi-
deration the set 7 which 1s constructed from the set ( 1in the following
way: X & L, if

X=aX 4 ..o oaXy  XeQ a0 i=mdns o b=
s << n! (1.3)

It is obvious that I 1s a convex closed, bounded set (a polyhedron) in

an n-dimensional Eucllidean space: Q L.

First, we shall solve the auxiliary problem. We must find a point Y& L,
such that

F (Y) = min ¥ (X), Xel (1.4)
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2., 8olution of the auxiliary prodblem. We shall find the minimum of the
function (1.1) on the set 1 . Let us denote by @(X) the gradlent of the
function p(X

oF oF

G(X)=(%,...,a——xn)=2NX—{—B

We select an arbitrary X, &€ L. Evaluating the gradient of the function
F (X) at the point X,, we get G, = G (X;) =2NX, + B. Let us find a point
Z, =L, such that

Z,*G, = min X*G,, XelL (2.1

The components of the vector &, have to be found in the following way.
Let @ ="(g,*,..., g,*), and let the largest component of the vector @, be
ﬁlk' Then one must take for g£,* the smallest one of the numbers vy;,...,y,

ext, we look for the largest one of the numbers g,' (¢ # %) and for the
smallest one of the remailnder in the sequence vy,,..., y,, and so on, until
we find all components of the vector &,. It is easy to see that Z,&=,
i.e. the solution of the lineer problem (2.1) will be an integer solution.
Let us take now the linear combination

X (@) =aX;, 4+ (1 —a) Z;, o € [0, 1]

We find an o =a, & [0, 1], such that F (X; (1)) = min F (X, (a)), a & [0, 1].
It 1s obvious that
. (Xy — Zy* [2NZ, + B] Sy
MK LN K —Z) T s @.2)

Ir X,# %, , then the denominator g,> O 1in (2.2) because of the positive
definiteness of the matrix » ; if, however, X = 2, then X 1s a solution
of the stated problem.

If the o, defined by (2.2) 1s negatlve, then it is easily seen that
F(%,) < p(x,‘). In this case, we assume that X,= 2, ,

Suppose that the numerator s;> 0 in (2.2). Since
s = 8§ + (X, — Z)* [2NX, + Bl (Xy — Z)* [2NX, 4+ B] > 0
(the last statement is implied by (2.1)) then s, > 5, and 0 <@y << 1. In this
case we set
Xo= Xy + (1 — o) 2

It 1s obvious that F (Xy) < F (X)), Xy e L.
We proceed in an analogous way., 1In this manner we obtain the sequences

X Xp..., XoEL; 2,24 ..., ZE=Q 2.3)
Because of the cholce of the 2, we have 2.9
P = (Zs — XJ* G <0, FXP2FX)2>..., lmFX)=d, FX)>d

Here, 4 1s a finite number because [ 18 a bounded set,

Let Y be an arbitrary limit of the sequance X, X,,..., 1,e. there
exists a sequence X, K X, ,... such that st —-YelL.

Then one can show, Jjust as 1t was done in (4], that
F(Y) = min F(X), X& L
From the results of [4] it follows that
min [(X — Y*G] =0, Xe&lL, G=G(Y)=2NY-+ B (2.5)

3. Finding an integer solution on the dasis of a solution of the auxi-
liary problem, We assume that a solution of the "continuous” oroblem is
iven, i.e, one lnows & point Y &I such that F(Y)=minF (X), X &L
Such & point can be found by the method described above).
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. In order to find a solution of the integer problem, i.e, to find a point
Z € Q, which ylelds a minimum of the function (1.1) on the set Q , we can
use the following arguments:

1. Let us represent the function F(X) in the form
FX)y=FY)+ X—~Y)*[2NY+ B]+ (X~ Y*N(X—Y) 3.1)
Since the matrix ¥ 18 positive definlte, we have
FIX)Z2F(Y)+ (X —Y)*G, G=2NY-+ B

Suppose that we know the algorithm for ordering the points of the set [
relative to the vector @ , 1.e. we lnow & method for constructing the points

Xin Xigr oo Xip o Xons - - o1 Xgpgoe - - 3.2)
such that
xljeQ (i:’i’zy'--;i=1r21'~'1pi)
Xp* G - X*G=.., = sz; G Xy*G=...= sz;G< 3.3)

whereby, if X, ,*@ = ¢ , then any vector X &€ , for which X*@ < a will
appear in the sequence (3.2) to the left of X (1t will be shown below
how to construct the sequence (3.2) which has the property (3.3)). Then

Xy =—YWG=...=X1p, — VG, ..

Since the point ¥ yields a minimum for the function F(X) on the set 7,
it follows from (2.5) that (X;; — Y)*G>0. We form the set

Ry = (xuv voeoey xlpl, xgp sy xmh . ey xmpm}

Suppose that
8, = min F (X), X ER,y, dn=Xpm, —Y)*G

Irt X&eQ and X & Ry, then (X — Y)* G >6,,. It 1s obvious that &,
does not decrease, and that 6, only decreases with an increase of m . For

Xe Q XeiR,, vehave
FX)>F((Y)+ 6, (3.4

1f it should happen that 8,, < F (Y) + §,,, then 8, = min F (X), X & Q.

2. The method presented above for filling the integer solution from a
known "continuous” solution, i1s not applicable if at the point ¥ the func-
tion F(X) attains a minimum in the entire space (then @ = (0,...,0}), or
if all coordinates of the vector @ are equal, In this case, if the matrix
¥ 1is strictly positive definite, one can construct a sequence of points
(3.2) which has the following property:

Ky — V2= .. =Xy, — VNP < Ky = Y= .. = (Xgpy— V...

Making use of the decomposition (3.1) and the strict positive definiteness
of Eheur;m;rix N one can, in this case also, obtain an estimate analogous
to (3.

4., Bxample. Let us consider the problem of selecting the optimum order
of action on the linear system

X (@)= 40X @)+ B@#)u, @)+ 1), X (0) = X, (4.1)

where X(t) is an unknown n-dimensional vector function; A(¢) is an
n-dimensional square matrix, Y. ;, (t) an m-dimensional vector function of the
external controlled action, ¢£i¢) a known n-dimensicnal vector funection of
the external uncontrolled action, and B(¢) an m X n matrix,

The components of the vectors i, (), /() and the elements of the matri-

ces 4{¢) anda p(t) are assumed to be piece-wise continuous, given and
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functions of time on [0, 7). It 1s sufficient that they be measuradble. The
vector function LI (t) i8 determined by the relation

q
Uy (1) = ; K@ (¢t — ¢;4) (4.2)
=1

where K (¢ =1, ..., 1) are given m-dimensional vectors ¢ (t) =0 when
t <O and t > At , while when ¢t & [0, Ar] the function ¢ (t) =¥ () ; here
¥(t) 1s a continuous given function, Ar 18 a known quantity,

=t + A, k=1,..,9—1t=0,¢t,,=T

where At 1s a given quantity.

In this manner, the vector function Yjgi) (1) 18 determined as a discrete
numerical function J(1) . The total number of the function J(¢) with
t =1,.00, g5 =0, ..., g —1 1s equal to g1 We shall denote the set
of these functions by Q, . We are given the functional

g—1
JG @)= 2 X* (85,7 (1) NX (¢, J (@) (4.3)
j=o0
Here X(t,, f(t)) is a solution of the system (4.1) at the point ¢

when
the control (i) € ), 1s selected; the matrlx ¥ 18 a positive derinite
square matrix of order n . It is required to find j, (i) &€ Q, such that

g—1
J (o () = min D) X* (¢, j (D) NX (£, (i), i) e (4.4)
j=0

By means of Cauchy's formula the solution of the system (4.1) may be writ-
ten
t

q
X (6) = Y (f) Xy SY @ Y1 (%) [B 0 D K (¢ — i) + () ]dt
0 i=1
Here ¥(t) is the fundamental matrix of the homogeneous part of the sys-

tem (4.1), and the problem of the minimization of the functional (4.%) can
be reduced to the followlng one.

We are given the function
F(K)=K*NK +K*b+¢ (4.5)

where K = (K ,..., K/) 1s an mg-dimensional vector since K (L = 1,...,q)
is an m-dimensional vector; ¥, 1s a positive definite g¢th order matrix; bd
18 arn m-dimensional vector, o & real number. DBesides that, we are given

gm-dimensional vectors vy,,..., y, from which one can construct g¢! differ-
ent mg-dimensional vectors which form the set 0 . It 1s necessary to find

Y Q@ such that
< F(Y)=min F (K), K& Q (4.6)

This problem is solved by the method presented in Sections 1 and 2, but
the finding of the solution of the linear problem in this case 18 reduced to
solving the "problem of specifications”., If only one component of the vec-
tors vy (£ = 1,..., g) in (4.2) depends on the number ¢ of the reaction,
then the problem colncldes exactly with the one treated in Section 1.

Appendix, Let us consider a set (i ordered relative to the vector @.
Below, we give an algorithm for the constructlon of the sequence (3.2) which
has the property (3.3). For simplicity's sake, we assume that the coordi-
nates of the vector @ = (g*,..., g*) are all distinct and that ¢'<g"<...<g*.
By the hypothesis made 1n gection , there are no equal numbers 8moNg vy, ;...
eeey Ya

It 1s obvious that one must take for X, the vector X, = (x,',...,x)
whose coordinates are the numbers y, arranged in decreasing order.

Suppose we have constructed the beglnning of the sequence (3.2):'X,,...,
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XE_, . In order to find the next vector we proceed as follows: for each of
the already constructed vectors , o+s, X, we construct (n — 1) vectors
which are obtained by a transpositlon of only two adjacent coordinates of
this vector; from the set p,_, of vectors so obtained we select a vector
X, such that

X,*G = min X*G, X & D, X =+ X; G=1,...k—1)

We shall show that this vector is the required one. Indeed, for each
vector Z < Q, for which

min X*G < Z*G < max X*G, X & Q

there exist vectors & and &, obtained from & by a transposition of only
two adjacent coordinates and having the property that Z,*G < Z*G < Z,*G.

But then if X, 1s the next vector after X _, in the sequence (3.2),
then there exists a vector X, obtained from X, by a transposition of only
two adjacent coordinates for which léx *@ < X, *@ and, since X, is the near-
est vector to X,_, in the sequence (3.1), the vector x% must oceur among
the vectors X ,... X,_,. Consequently this means that he point X, is 1in
the set »p,.,.
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